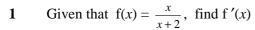
DIFFERENTIATION



a using the product rule,

b using the quotient rule.

2 Differentiate each of the following with respect to x and simplify your answers.

e $\frac{x}{2-x^2}$ f $\frac{\sqrt{x}}{3x+2}$ g $\frac{e^{2x}}{1-e^{2x}}$ h $\frac{2x+1}{\sqrt{x-3}}$

Find $\frac{dy}{dx}$, simplifying your answer in each case.

a $y = \frac{x^2}{x + 4}$

b $y = \frac{\sqrt{x-4}}{2x^2}$

 $\mathbf{c} \quad y = \frac{2e^x + 1}{1 - 3e^x}$

d $y = \frac{1-x}{x^3+2}$

 $\mathbf{e} \quad y = \frac{\ln(3x-1)}{r+2}$

 $\mathbf{f} \quad y = \sqrt{\frac{x+1}{x+3}}$

Find the coordinates of any stationary points on each curve. 4

a $y = \frac{x^2}{3-x}$

b $y = \frac{e^{4x}}{2x-1}$

c $y = \frac{x+5}{\sqrt{2x+1}}$

d $y = \frac{\ln 3x}{2x}$

 $\mathbf{e} \quad y = \left(\frac{x+1}{x-2}\right)^2$

f $y = \frac{x^2 - 3}{x + 2}$

5 Find an equation for the tangent to each curve at the point on the curve with the given *x*-coordinate.

a $y = \frac{2x}{3-x}$, x = 2

b $y = \frac{e^x + 3}{e^x + 1},$ x = 0

 $\mathbf{c} \quad y = \frac{\sqrt{x}}{5x}, \qquad x = 4$

d $y = \frac{3x+4}{x^2+1}, \qquad x = -1$

Find an equation for the normal to each curve at the point on the curve with the given x-coordinate. 6 Give your answers in the form ax + by + c = 0, where a, b and c are integers.

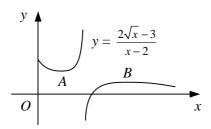
a $y = \frac{1-x}{3x+1},$ x = 1

b $y = \frac{4x}{\sqrt{2-x}}, \qquad x = -2$

 \mathbf{c} $y = \frac{\ln(2x-5)}{3x-5}$, x = 3

d $y = \frac{x}{x^3 - 4}$, x = 2

7



The diagram shows part of the curve $y = \frac{2\sqrt{x}-3}{x-2}$ which is stationary at the points A and B.

a Show that the x-coordinates of A and B satisfy the equation $x - 3\sqrt{x} + 2 = 0$.

b Hence, find the coordinates of *A* and *B*.